udf_model#
compiler#
- class BinOp(val: 'str', left: 't.Optional[Node]' = None, right: 't.Optional[Node]' = None)#
Bases:
Node
- accept_children(visitor)#
Branch nodes should override this to let the visitor visit the node’s children
- class Func(val: 'str', args: 't.Tuple[Node, ...]' = ())#
Bases:
Node
- accept_children(visitor)#
Branch nodes should override this to let the visitor visit the node’s children
- class Node(val: 'str')#
Bases:
object
- accept(visitor, top_down=False)#
Accept a visitor and traverse the tree. Branch nodes must override Node.accept_children
- Parameters:
visitor – the Visitor
top_down – whether to first the branch nodes and then the children (top_down=True) or first the children and then the branch nodes (top_down=False)
- accept_children(visitor)#
Branch nodes should override this to let the visitor visit the node’s children
- accept_node(visitor)#
Accept a visitor but do not traverse any children. The visitor is responsible for traversing the tree.
- val: str#
- class Parser(tokenizer: Iterable)#
Bases:
object
A simple recursive descent parser
- add_expr()#
add_expr : [“+”|”-”] mul_expr ((“+” | “-”) mul_expr)*
- atom()#
factor : num | function_or_name | “(” expr “)”
- comp_expr()#
comp_expr: add_expr ((“==” | “!=”) add_expr)*
- error()#
- expect(*token_type: str)#
- expr()#
- function_or_name()#
function_or_name : name “(” expr? (“,” expr)* “)” | name
- ignore = ('ws',)#
- mul_expr()#
mul_expr : atom ((MUL | DIV) atom)*
- next_valid_token()#
- parse()#
- peek(*token_type)#
- class Token(type, text)#
Bases:
NamedTuple
- text: str#
Alias for field number 1
- type: str#
Alias for field number 0
- class UDFCompiler#
Bases:
NodeVisitor
- class VariableNameCollector#
Bases:
NodeVisitor
- compile(string)#
functions#
- default_func(arr: TrackedCSRArray | ndarray, default_val: float | TrackedCSRArray | ndarray)#
- func(name: str)#
- if_func(*arrays_or_values)#
- max_func(*arrays_or_values)#
calculate row-wise maximum value of n arrays or values. Every array must have the same length in the first dimension. Values are broadcasted along the first axis
- min_func(*arrays_or_values)#
calculate row-wise minimum value of n arrays or values. Every array must have the same length in the first dimension. Values are broadcasted along the first axis
- sum_func(arr)#
udf_model#
- class UDF(func, output_attr)#
Bases:
object
- run(inputs: Dict[str, UniformAttribute | CSRAttribute])#
- class UDFInfo(dataset: 'str', entity_group: 'str', expression: 'str', output_attribute: 'str')#
Bases:
object
- dataset: str#
- entity_group: str#
- expression: str#
- get_output_attribute(state: TrackedState, schema: AttributeSchema, replace_sub=True)#
- make_udf(state: TrackedState, schema: AttributeSchema, replace_sub=True)#
- output_attribute: str#
- class UDFModel(model_config: dict)#
Bases:
TrackedModel
- inputs: Dict[str, UniformAttribute | CSRAttribute]#
- run_udfs()#
- setup(state: TrackedState, schema: AttributeSchema, **_)#
In setup, a model receives a state object, it’s config and other parameters. The goal of setup is to prepare the state by giving it information of the attributes it needs to track (by subscribing (INIT/SUB/OPT) or publishing (PUB) attributes) from which datasets. These attributes may be grouped together in EntityGroup classes or created directly. The main entry points for registering are:
state.add_dataset() for registering a bunch of EntityGroup classes for a certain dataset name at once
state.add_entity_group() for registering a single EntityGroup class (or instance) for a dataset name
state.register_attribute() for registering a single attribute in a dataset/entity_group combination
During setup there is no data available in the state. These will be downloaded automatically by the TrackedModelAdapter. However, additional datasets may be requested directly through the init_data_handler parameter.
- Parameters:
state – The model’s TrackedState object, managed by the TrackedModelAdapter
settings – global settings
schema – The AttributeSchema with all registered attributes
init_data_handler – an InitDataHandler that may be used to retrieve additional datasets
logger – a logging.Logger instance
- update(**_)#
The update method is called for every update coming from the model engine. However it is only called the first time once all PUB attributes have their arrays filled with data. When the simulation progresses to t>0 before the model’s SUB attributes have been filled, an Exception is raised, indicating that the model was not ready yet.
- Parameters:
state – The model’s TrackedState object, managed by the TrackedModelAdapter
moment – The current simulation Moment
- Returns:
an optional Moment indicating the next time a model want to be woken up, as per the model engine’s protocol
- convert_v1_v2(config)#
- get_input_attributes(config: dict, schema: AttributeSchema, state: TrackedState)#
- get_udf_infos(config)#
- prepare_optional_attributes(config, inputs: Dict[str, UniformAttribute | CSRAttribute])#
Module contents#
- class UDFModel(model_config: dict)#
Bases:
TrackedModel
- inputs: Dict[str, UniformAttribute | CSRAttribute]#
- run_udfs()#
- setup(state: TrackedState, schema: AttributeSchema, **_)#
In setup, a model receives a state object, it’s config and other parameters. The goal of setup is to prepare the state by giving it information of the attributes it needs to track (by subscribing (INIT/SUB/OPT) or publishing (PUB) attributes) from which datasets. These attributes may be grouped together in EntityGroup classes or created directly. The main entry points for registering are:
state.add_dataset() for registering a bunch of EntityGroup classes for a certain dataset name at once
state.add_entity_group() for registering a single EntityGroup class (or instance) for a dataset name
state.register_attribute() for registering a single attribute in a dataset/entity_group combination
During setup there is no data available in the state. These will be downloaded automatically by the TrackedModelAdapter. However, additional datasets may be requested directly through the init_data_handler parameter.
- Parameters:
state – The model’s TrackedState object, managed by the TrackedModelAdapter
settings – global settings
schema – The AttributeSchema with all registered attributes
init_data_handler – an InitDataHandler that may be used to retrieve additional datasets
logger – a logging.Logger instance
- update(**_)#
The update method is called for every update coming from the model engine. However it is only called the first time once all PUB attributes have their arrays filled with data. When the simulation progresses to t>0 before the model’s SUB attributes have been filled, an Exception is raised, indicating that the model was not ready yet.
- Parameters:
state – The model’s TrackedState object, managed by the TrackedModelAdapter
moment – The current simulation Moment
- Returns:
an optional Moment indicating the next time a model want to be woken up, as per the model engine’s protocol